Protein Cellular Localization with Multiclass Support Vector Machines and Decision Trees
نویسندگان
چکیده
Many cellular functions are carried out in compartments of the cell. The cellular localization of a protein is thus related to its function identification. This paper investigates the use of two Machine Learning techniques, Support Vector Machines (SVMs) and Decision Trees (DTs), in the protein cellular localization prediction problem. Since the given task has multiple classes and SVMs are originally designed for the solution of two class problems, several strategies for multiclass SVMs extension were investigated, including one proposed by the authors.
منابع مشابه
Multiclass Text Classification A Decision Tree based SVM Approach
This paper discusses about combining Support Vector Machine and decision trees for multi class text classification. Support Vector Machines are trained on each class at each level of the tree and the SVM which is more successful in predicting a class at that level is selected as the decision in that node. Thus a tree is constructed with different SVM in each node. And the tree constructed is us...
متن کاملInterpretable Multiclass Models for Corporate Credit Rating Capable of Expressing Doubt
Corporate credit rating is a process to classify commercial enterprises based on their creditworthiness. Machine learning algorithms can construct classification models, but in general they do not tend to be 100% accurate. Since they can be used as decision support for experts, interpretable models are desirable. Unfortunately, interpretable models are provided by only few machine learners. Fur...
متن کاملFuzzy Support Vector Machines Based on Density Estimation with Gaussian Mixture for Multiclass Problems
In this paper, we introduce new Fuzzy Support Vector Machines (FSVMs) for a multiclass classification. The suggested Fuzzy Support Vector Machines include the data distribution with the density estimated in a set of functions defined as Gaussian mixture. The proposed method gives more appropriate boundaries than the classical FSVM method. We demonstrate some examples which confirm our approach.
متن کاملMulticlass Support Vector Machines Using Adaptive Directed Acyclic Graph
This paper presents a method of extending Support Vector Machines (SVMs) for dealing with multiclass problems. Motivated by the Decision Directed Acyclic Graph (DDAG), we propose the Adaptive DAG (ADAG): a modified structure of the DDAG that has a lower number of decision levels and reduces the dependency on the sequence of nodes. Thus, the ADAG improves the accuracy of the DDAG while maintaini...
متن کاملObject Categorization Using Collections of Parts and Second Order Pooling Features
This thesis presents an investigation of the Collection of Parts Model for object categorization. Multiclass categorization is performed using the Collections of Parts model. Results using Support Vector Machines, L1 Logistic Regression and Boosted Decision Trees are presented and discussed. Methods to analyze confusion in these results are developed and results are presented. The Collections o...
متن کامل